Algebra II 5.4 Factoring

Obj: To factor polynomials and solve higher degree equations.

Factoring

- √Take out common terms first.
- √Factor more than once if necessary.

Examples, Factor each:

$$2x^2-5x-12$$

$$2x^2-5x-12$$
 $(2x+3)(x-4)$

$$6x^2+15x$$

$$6x^2 + 15x \quad 3x(2x + 5)$$

$$X^3+2x^2-15x$$

$$X(X+5)(X-3)$$

$$(x^2-10x+25)^2$$
 $4w^4-16w^3+16w^2$
 $(x-5)^2$ $4w^2(w^2-4w+4)$
 $4w^2(w^2-4w+4)$
Difference of 2 Squares

$$4x^2-49$$
 $2y^5-18y^3$

Sum & Difference of 2 Cubes

$$(a^{3}+b^{3})=(a+b)(a^{2}-ab+b^{2})$$

$$(a^{3}-b^{3})=(a-b)(a^{2}+ab+b^{2})$$

$$x^{3}+8 (x+8)(x^{2}-2x+4)$$

 $8x^{3}-27 (2x-3)(4x^{2}+2x+9)$

$$1-125x^3(1-5x)(1+5x+25x^2)$$

Factoring by Grouping:

When you have 4 terms, group the first 2 and the last 2.

$$(x^{3}+2x^{2})+9x+18)$$

$$(x^{4}+2)+9(x+2)$$

$$(x^{3}+2x^{2})+9x+18)$$

$$(x^{3}-2x^{2})+9x+18)$$

$$(x^{3}-2x^{2})+9x+18$$

$$($$

Misc. Examples:

81x⁴-16

$$(9x^2-4)(9x^2+4)$$

3y⁵-75y³ $3y^3(y^2-25)$
 $3y^3(y+5)(y-5)$

$$4x^6-20x^4+24x^2$$
 $2x^3-54$

$$2x^3 - 54$$

$$x^4 - 2x^2 - 63$$

Solving Polynomial Equations by Factoring

$$4x(x-3)(3x+2)(x^2-5)(x^2+5)=0$$

To solve a poly. equation:

- 1. Set equal to zero
- 2. Factor
- 3. Set each factor equal to zero
- 4. (The degree is the <u>most</u> # of solutions possible.)

- Factor
- Set each factor equal to zero
- (The degree is the most # of solutions possible.)

3. Set each factor equal to zero
4. (The degree is the most # of solutions possible.)

$$2x^{5} + 24x = 14x^{3}$$

$$2x^{5} - 14x^{3} + 24x = 0$$

$$2x(x^{4} - 7x^{2} + 12) = 0$$

$$2x(x^{3} - 27) = 0$$

$$(x - 3)(x^{3} + 3x + 9)$$

$$(x - 3)(x^{3} + 3x + 9) = 0$$

$$2x(x^{3} - 3)(x^{3} + 12) = 0$$

$$2x(x^{3} - 3)(x + 3)(x - 3) = 0$$

$$2x + 3x + 9 = 0$$

$$x - 3 = 0$$

Set equal to zero

- 2. Factor
- 3. Set each factor equal to zero
- (The degree is the <u>most</u> # of solutions possible.)

solutions possible.)
$$3x^{3} + 7x^{2} - |2x| = 28$$

$$3x^{3} + 7x^{2}/-|2x| - 28/= 0$$

$$x^{2}(3x+7) - 4(3x+7) = 0$$

$$(x^{2}-4)(3x+7) = 0$$

$$(x-2)(x+2)(3x+7) = 0$$

$$3x+7-0$$

$$X=2[x=-2] = 2$$

$$x=-7=2$$

- 1. Set equal to zero
- 2. Factor
- 3. Set each factor equal to zero
- 4. (The degree is the <u>most</u> # of solutions possible.)

$$9x^4 - 12x^2 + 4 = 0$$

- Set equal to zero 1.
- 2. Factor
- 3.
- Set each factor equal to zero (The degree is the <u>most</u> # of solutions possible.)

$$16x^8 = 81$$

				0
	e			
18				